By Topic

PAC-Bayesian Inequalities for Martingales

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Seldin, Y. ; Max Planck Inst. for Intell. Syst., Tubingen, Germany ; Laviolette, F. ; Cesa-Bianchi, N. ; Shawe-Taylor, J.
more authors

We present a set of high-probability inequalities that control the concentration of weighted averages of multiple (possibly uncountably many) simultaneously evolving and interdependent martingales. Our results extend the PAC-Bayesian (probably approximately correct) analysis in learning theory from the i.i.d. setting to martingales opening the way for its application to importance weighted sampling, reinforcement learning, and other interactive learning domains, as well as many other domains in probability theory and statistics, where martingales are encountered. We also present a comparison inequality that bounds the expectation of a convex function of a martingale difference sequence shifted to the [0, 1] interval by the expectation of the same function of independent Bernoulli random variables. This inequality is applied to derive a tighter analog of Hoeffding-Azuma's inequality.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 12 )