Cart (Loading....) | Create Account
Close category search window
 

Geographic Image Retrieval Using Local Invariant Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yi Yang ; Electr. Eng. & Comput. Sci. Program, Univ. of California, Merced, Merced, CA, USA ; Newsam, S.

This paper investigates local invariant features for geographic (overhead) image retrieval. Local features are particularly well suited for the newer generations of aerial and satellite imagery whose increased spatial resolution, often just tens of centimeters per pixel, allows a greater range of objects and spatial patterns to be recognized than ever before. Local invariant features have been successfully applied to a broad range of computer vision problems and, as such, are receiving increased attention from the remote sensing community particularly for challenging tasks such as detection and classification. We perform an extensive evaluation of local invariant features for image retrieval of land-use/land-cover (LULC) classes in high-resolution aerial imagery. We report on the effects of a number of design parameters on a bag-of-visual-words (BOVW) representation including saliency- versus grid-based local feature extraction, the size of the visual codebook, the clustering algorithm used to create the codebook, and the dissimilarity measure used to compare the BOVW representations. We also perform comparisons with standard features such as color and texture. The performance is quantitatively evaluated using a first-of-its-kind LULC ground truth data set which will be made publicly available to other researchers. In addition to reporting on the effects of the core design parameters, we also describe interesting findings such as the performance-efficiency tradeoffs that are possible through the appropriate pairings of different-sized codebooks and dissimilarity measures. While the focus is on image retrieval, we expect our insights to be informative for other applications such as detection and classification.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:51 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.