By Topic

Global Identification of Wind Turbines Using a Hammerstein Identification Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gijs van der Veen ; Delft Center for Systems and Control, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Delft, The Netherlands ; Jan-Willem van Wingerden ; Michel Verhaegen

In this brief, we present a novel methodology to obtain a nonlinear data-driven model of a wind turbine. We have previously shown that the elementary dynamics of wind turbines can be represented in the form of a multivariable closed-loop Hammerstein structure, where the nonlinear mappings consist of the torque and thrust coefficients. Hammerstein systems consist of a static nonlinearity followed by a linear, time-invariant dynamic subsystem. The dynamic subsystem is identified using a new closed-loop subspace method. The nonlinearity is described using a recently developed regression framework for multivariate splines. We further propose a separable least-squares framework for recovery of the low-rank structure between the nonlinearity and the linear time-invariant system. The method is applied to a detailed simulation of the three-bladed NREL controls advanced research turbine.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:21 ,  Issue: 4 )