By Topic

Mobile Voice Health Monitoring Using a Wearable Accelerometer Sensor and a Smartphone Platform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mehta, D.D. ; Center for Laryngeal Surg. & Voice Rehabilitation, Massachusetts Gen. Hosp., Boston, MA, USA ; Zañartu, M. ; Feng, S.W. ; Cheyne, H.A.
more authors

Many common voice disorders are chronic or recurring conditions that are likely to result from faulty and/or abusive patterns of vocal behavior, referred to generically as vocal hyperfunction. An ongoing goal in clinical voice assessment is the development and use of noninvasively derived measures to quantify and track the daily status of vocal hyperfunction so that the diagnosis and treatment of such behaviorally based voice disorders can be improved. This paper reports on the development of a new, versatile, and cost-effective clinical tool for mobile voice monitoring that acquires the high-bandwidth signal from an accelerometer sensor placed on the neck skin above the collarbone. Using a smartphone as the data acquisition platform, the prototype device provides a user-friendly interface for voice use monitoring, daily sensor calibration, and periodic alert capabilities. Pilot data are reported from three vocally normal speakers and three subjects with voice disorders to demonstrate the potential of the device to yield standard measures of fundamental frequency and sound pressure level and model-based glottal airflow properties. The smartphone-based platform enables future clinical studies for the identification of the best set of measures for differentiating between normal and hyperfunctional patterns of voice use.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 11 )