By Topic

Incremental Learning of 3D-DCT Compact Representations for Robust Visual Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xi Li ; Australian Centre for Visual Technol., Univ. of Adelaide, Adelaide, SA, Australia ; Dick, A. ; Chunhua Shen ; van den Hengel, A.
more authors

Visual tracking usually requires an object appearance model that is robust to changing illumination, pose, and other factors encountered in video. Many recent trackers utilize appearance samples in previous frames to form the bases upon which the object appearance model is built. This approach has the following limitations: 1) The bases are data driven, so they can be easily corrupted, and 2) it is difficult to robustly update the bases in challenging situations. In this paper, we construct an appearance model using the 3D discrete cosine transform (3D-DCT). The 3D-DCT is based on a set of cosine basis functions which are determined by the dimensions of the 3D signal and thus independent of the input video data. In addition, the 3D-DCT can generate a compact energy spectrum whose high-frequency coefficients are sparse if the appearance samples are similar. By discarding these high-frequency coefficients, we simultaneously obtain a compact 3D-DCT-based object representation and a signal reconstruction-based similarity measure (reflecting the information loss from signal reconstruction). To efficiently update the object representation, we propose an incremental 3D-DCT algorithm which decomposes the 3D-DCT into successive operations of the 2D discrete cosine transform (2D-DCT) and 1D discrete cosine transform (1D-DCT) on the input video data. As a result, the incremental 3D-DCT algorithm only needs to compute the 2D-DCT for newly added frames as well as the 1D-DCT along the third dimension, which significantly reduces the computational complexity. Based on this incremental 3D-DCT algorithm, we design a discriminative criterion to evaluate the likelihood of a test sample belonging to the foreground object. We then embed the discriminative criterion into a particle filtering framework for object state inference over time. Experimental results demonstrate the effectiveness and robustness of the proposed tracker.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 4 )