Cart (Loading....) | Create Account
Close category search window

Direct measurement of Dirac point and Fermi level at graphene/oxide interface by internal photoemission

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Kun Xu ; Semicond. & Dimensional Metrol. Div., Nat. Inst. of Stand. & Technol., Gaithersburg, MD, USA ; Zeng, Caifu ; Qin Zhang ; Peide Ye
more authors

We report the first direct measurement of the Dirac point, the Fermi level, and the work function of single layer gapless graphene by using photoemission threshold spectroscopy. Since the pioneering work of Novoselov et al in 2004, [1] graphene has attracted an immense amount of interest from all disciplines. [2] The knowledge of the physics of graphene-based devices has grown dramatically. Along with the recent success of large area chemical vapor deposition (CVD) growth of graphene, [3] it seems the industrial applications such as transparent electrodes, [4] field effect transistors, [5] and quantum well devices [6] are becoming more promising. However, the precise position of the Dirac point and Fermi level at the graphene/oxide interface has yet to be investigated; despite their importance in the design and modeling of graphene-based devices. In this paper, we present the study of a semi-transparent metal/high-k/graphene/SiO2/Si structure, and focus our study on the photoemission phenomena at the graphene/SiO2 interface. As a result, a complete electronic band alignment of the graphene/SiO2/Si system is accurately constructed for the first time.

Published in:

Device Research Conference (DRC), 2012 70th Annual

Date of Conference:

18-20 June 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.