By Topic

Multiple Target Tracking by Learning-Based Hierarchical Association of Detection Responses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chang Huang ; NEC Research Laboratories, Cupertino ; Yuan Li ; Ramakant Nevatia

We propose a hierarchical association approach to multiple target tracking from a single camera by progressively linking detection responses into longer track fragments (i.e., tracklets). Given frame-by-frame detection results, a conservative dual-threshold method that only links very similar detection responses between consecutive frames is adopted to generate initial tracklets with minimum identity switches. Further association of these highly fragmented tracklets at each level of the hierarchy is formulated as a Maximum A Posteriori (MAP) problem that considers initialization, termination, and transition of tracklets as well as the possibility of them being false alarms, which can be efficiently computed by the Hungarian algorithm. The tracklet affinity model, which measures the likelihood of two tracklets belonging to the same target, is a linear combination of automatically learned weak nonparametric models upon various features, which is distinct from most of previous work that relies on heuristic selection of parametric models and manual tuning of their parameters. For this purpose, we develop a novel bag ranking method and train the crucial tracklet affinity models by the boosting algorithm. This bag ranking method utilizes the soft max function to relax the oversufficient objective function used by the conventional instance ranking method. It provides a tighter upper bound of empirical errors in distinguishing correct associations from the incorrect ones, and thus yields more accurate tracklet affinity models for the tracklet association problem. We apply this approach to the challenging multiple pedestrian tracking task. Systematic experiments conducted on two real-life datasets show that the proposed approach outperforms previous state-of-the-art algorithms in terms of tracking accuracy, in particular, considerably reducing fragmentations and identity switches.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:35 ,  Issue: 4 )