By Topic

Variable selection in statistical models using population-based incremental learning with applications to genome-wide association studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hien Duy Nguyen ; School of Mathematics and Physics, University of Queensland, St. Lucia, 4072, Australia ; Ian A. Wood

Variable selection is the problem of choosing the subset of explanatory variables for a regression or classification model such that the resulting model is best according to some criterion. Here we consider the use of population-based incremental learning (PBIL) to select the variables for a linear regression model to predict a quantitative trait in living organisms. The data here is simulated to represent a genome-wide association study (GWAS) using single nucleotide polymorphisms (SNPs) as explanatory variables and height as an example trait. PBIL was effective in optimizing a variety of model fitness criteria. The resulting models were found to have true positive and false negative rates comparable to those of competing methods.

Published in:

2012 IEEE Congress on Evolutionary Computation

Date of Conference:

10-15 June 2012