By Topic

Multi-objective optimization using a hybrid differential evolution algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xianpeng Wang ; Liaoning Key Lab. of Manuf. Syst. & Logistics, Northeastern Univ., Shenyang, China ; Lixin Tang

This paper proposes a hybrid differential evolution algorithm for multi-objective optimization problems. One major feature of this hybrid multi-objective differential evolution (HMODE) algorithm is that it adopts subpopulations whose sizes are dynamically adapted during the evolution process. The second feature is that the HMODE adopts a new solution update mechanism instead of the standard one used in the traditional differential evolution. The HMODE uses multiple operators and assigns an operator to each subpopulation. The update of each subpopulation is based on the assigned operator. The third feature of the HMODE is that a self-adapt local search method is used to improve the external archive. Computational study on benchmark problems shows that the HMODE is competitive or superior to previous multi-objective algorithms in the literature.

Published in:

Evolutionary Computation (CEC), 2012 IEEE Congress on

Date of Conference:

10-15 June 2012