By Topic

Off-line parameter tuning for Guided Local Search using Genetic Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alsheddy, A. ; Comput. & Inf. Sci. Coll., Imam Muhammad Ibn Saud Islamic Univ., Riyadh, Saudi Arabia ; Kampouridis, M.

Guided Local Search (GLS), which is a simple meta-heuristic with many successful applications, has lambda as the only parameter to tune. There has been no attempt to automatically tune this parameter, resulting in a parameterless GLS. Such a result is a very practical objective to facilitate the use of meta-heuristics for end- users (e.g. practitioners and researchers). In this paper, we propose a novel parameter tuning approach by using Genetic Programming (GP). GP is employed to evolve an optimal formula that GLS can use to dynamically compute lambda as a function of instance-dependent characteristics. Computational experiments on the travelling salesman problem demonstrate the feasibility and effectiveness of this approach, producing parameterless formulae with which the performance of GLS is competitive (if not better) than the standard GLS.

Published in:

Evolutionary Computation (CEC), 2012 IEEE Congress on

Date of Conference:

10-15 June 2012