By Topic

Fault Demotion Using Reconfigurable Slack (FaDReS)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Imran, N. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Central Florida, Orlando, FL, USA ; Jooheung Lee ; DeMara, R.F.

We propose an active dynamic redundancy-based fault-handling approach exploiting the partial dynamic reconfiguration capability of static random-access memory-based field-programmable gate arrays. Fault detection is accomplished in a uniplex hardware arrangement while an autonomous fault isolation scheme is employed, which neither requires test vectors nor suspends the computational throughput. The deterministic flow of the fault-handling scheme achieves an improved recovery in a bounded number of reconfigurations. This approach extends existing signal processing properties to accommodate fault handling, and is validated by implementing an H.263 video encoder discrete cosine transform (DCT) block. The peak signal-to-noise ratio measure of the video sequences indicates fault tolerance in the DCT block with only limited quality degradation, during the isolation and recovery phases spanning a few frames.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:21 ,  Issue: 7 )