Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Addressing Transient and Permanent Faults in NoC With Efficient Fault-Tolerant Deflection Router

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Chaochao Feng ; Sch. of Comput., Nat. Univ. of Defense Technol., Changsha, China ; Zhonghai Lu ; Jantsch, A. ; Minxuan Zhang
more authors

Continuing decrease in the feature size of integrated circuits leads to increases in susceptibility to transient and permanent faults. This paper proposes a fault-tolerant solution for a bufferless network-on-chip, including an on-line fault-diagnosis mechanism to detect both transient and permanent faults, a hybrid automatic repeat request, and forward error correction link-level error control scheme to handle transient faults and a reinforcement-learning-based fault-tolerant deflection routing (FTDR) algorithm to tolerate permanent faults without deadlock and livelock. A hierarchical-routing-table-based algorithm (FTDR-H) is also presented to reduce the area overhead of the FTDR router. Synthesized results show that, compared with the FTDR router, the FTDR-H router can reduce the area by 27% in an 88 network. Simulation results demonstrate that under synthetic workloads, in the presence of permanent link faults, the throughput of an 8 8 network with FTDR and FTDR-H algorithms are 14% and 23% higher on average than that with the fault-on-neighbor (FoN) aware deflection routing algorithm and the cost-based deflection routing algorithm, respectively. Under real application workloads, the FTDR-H algorithm achieves 20% less hop counts on average than that of the FoN algorithm. For transient faults, the performance of the FTDR router can achieve graceful degradation even at a high fault rate. We also implement the fault-tolerant deflection router which can achieve 400 MHz in TSMC 65-nm technology.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:21 ,  Issue: 6 )