By Topic

BilRC: An Execution Triggered Coarse Grained Reconfigurable Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oguzhan Atak ; Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey ; Abdullah Atalar

We present Bilkent reconfigurable computer (BilRC), a new coarse-grained reconfigurable architecture (CGRA) employing an execution-triggering mechanism. A control data flow graph language is presented for mapping the applications to BilRC. The flexibility of the architecture and the computation model are validated by mapping several real-world applications. The same language is also used to map applications to a 90-nm field-programmable gate array (FPGA), giving exactly the same cycle count performance. It is found that BilRC reduces the configuration size about 33 times. It is synthesized with 90-nm technology, and typical applications mapped on BilRC run about 2.5 times faster than those on FPGA. It is found that the cycle counts of the applications for a commercial very long instruction word digital signal processor processor are 1.9 to 15 times higher than that of BilRC. It is also found that BilRC can run the inverse discrete cosine transform algorithm almost 3 times faster than the closest CGRA in terms of cycle count. Although the area required for BilRC processing elements is larger than that of existing CGRAs, this is mainly due to the segmented interconnect architecture of BilRC, which is crucial for supporting a broad range of applications.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:21 ,  Issue: 7 )