By Topic

Color Biological Features-Based Solder Paste Defects Detection and Classification on Printed Circuit Boards

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun Jiang ; Lab. for Human Machine Control, Shenzhen Inst. of Adv. Technol., Shenzhen, China ; Jun Cheng ; Dacheng Tao

Deposited solder paste inspection plays a critical role in surface mounting processes. When detecting solder pastes defects on a printed circuit board, profile measurement-based methods suffer from large system size, high cost, and low speed for inspection, although they provide 3-D information of solder pastes. In contrast, image analysis-based methods facilitate the defect detection process of solder pastes by treating them as a pattern recognition problem. However, existing image analysis methods do not perform well because low-level visual features cannot catch sufficient information for defect detection. This paper proposes a new defect detection scheme for solder pastes based on learning the color biological feature sub-manifold. In particular, we apply the biologically inspired color feature (BICF) to represent the solder paste images, and introduce a new sub-manifold learning method to extract the intrinsic low-dimensional BICF manifold embedded in an extrinsic high-dimensional ambient space. This scheme mimics the function of human visual cortex in recognition tasks, and can separate poor quality solder pastes from good quality ones. We apply the new scheme to our automated optical inspection system, and thorough empirical studies indicate the effectiveness of the new scheme for practical utilization.

Published in:

Components, Packaging and Manufacturing Technology, IEEE Transactions on  (Volume:2 ,  Issue: 9 )