By Topic

Oxide-Relief and Zn-Diffusion 850-nm Vertical-Cavity Surface-Emitting Lasers With Extremely Low Energy-to-Data-Rate Ratios for 40 Gbit/s Operations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jin-Wei Shi ; Dept. of Electr. Eng., Nat. Central Univ., Taoyuan, Taiwan ; Jhih-Cheng Yan ; Jhih-Min Wun ; Chen, J.
more authors

We demonstrate novel structures of a vertical-cavity surface-emitting laser (VCSEL) for high-speed (~40 Gbit/s) operation with ultralow power consumption performance. Downscaling the size of oxide aperture of VCSELs is one of the most effective ways to reduce the power consumption during high-speed operation. However, such miniaturized oxide apertures (~2 μm diameter) in VCSELs will result in a large differential resistance, optical single-mode output, and a small maximum output power (<; 1 mW). These characteristics seriously limit the maximum electrical-to-optical (E-O) bandwidth and device reliability. By the use of the oxide-relief and Zn-diffusion techniques in our demonstrated 850-nm VCSELs, we can not only release the burden imposed on downscaling the current-confined aperture for high speed with low-power consumption performance, but can also manipulate the number of optical modes inside the cavity to maximize the E-O bandwidth and product of bit-rate transmission distance in an OM4 fiber. State-of-the-art dynamic performances at both room temperature and 85 °C operations can be achieved by the use of our device. These include extremely high D-factors (~13.5 GHz/mA1/2), as well as record-low energy-to-data ratios (EDR: 140 fJ/bit) at 34 Gbit/s operation, and error-free transmission over a 0.8-km OM4 multimode fiber with a record-low energy-to-data distance ratio (EDDR: 175.5 fJ/ at 25 Gbit/s.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:19 ,  Issue: 2 )