By Topic

Resisting Web Proxy-Based HTTP Attacks by Temporal and Spatial Locality Behavior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yi Xie ; Sch. of Inf. Sci. & Technol., Sun YatSen Univ., Guangzhou, China ; Tang, S. ; Xiang, Y. ; Hu, J.

A novel server-side defense scheme is proposed to resist the Web proxy-based distributed denial of service attack. The approach utilizes the temporal and spatial locality to extract the behavior features of the proxy-to-server traffic, which makes the scheme independent of the traffic intensity and frequently varying Web contents. A nonlinear mapping function is introduced to protect weak signals from the interference of infrequent large values. Then, a new hidden semi-Markov model parameterized by Gaussian-mixture and Gamma distributions is proposed to describe the time-varying traffic behavior of Web proxies. The new method reduces the number of parameters to be estimated, and can characterize the dynamic evolution of the proxy-to-server traffic rather than the static statistics. Two diagnosis approaches at different scales are introduced to meet the requirement of both fine-grained and coarse-grained detection. Soft control is a novel attack response method proposed in this work. It converts a suspicious traffic into a relatively normal one by behavior reshaping rather than rudely discarding. This measure can protect the quality of services of legitimate users. The experiments confirm the effectiveness of the proposed scheme.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:24 ,  Issue: 7 )