By Topic

Collaborative Data Collection with Opportunistic Network Erasure Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mingsen Xu ; Georgia State University, Atlanta ; Wen-Zhan Song ; Yichuan Zhao

Disruptive network communication entails transient network connectivity, asymmetric links, and unstable nodes, which pose severe challenges to data collection in sensor networks. Erasure coding can be applied to mitigate the dependency of feedback in such a disruptive network condition, improving data collection. However, the collaborative data collection through an in-network erasure coding approach has been underexplored. In this paper, we present an Opportunistic Network Erasure Coding protocol (ONEC) to collaboratively collect data in dynamic disruptive networks. ONEC derives the probability distribution of coding degree in each node and enables opportunistic in-network recoding, and guarantees that the recovery of original sensor data can be achieved with high probability upon receiving any sufficient amount of encoded packets. First, it develops a recursive decomposition structure to conduct probability distribution deconvolution, supporting heterogeneous data rates. Second, every node conducts selective in-network recoding of its own sensing data and received packets, including those opportunistic overheard packets. Last, ONEC can efficiently recover raw data from received encoded packets, taking advantages of low decoding complexity of erasure codes. We evaluate and show that our ONEC can achieve efficient data collection in various disruptive network settings. Moreover, ONEC outperforms other epidemic network coding approaches in terms of network goodput, communication cost, and energy consumption.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:24 ,  Issue: 10 )