By Topic

Configuring a MapReduce Framework for Dynamic and Efficient Energy Adaptation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

MapReduce has become a popular framework for Big Data applications. While MapReduce has received much praise for its scalability and efficiency, it has not been thoroughly evaluated for power consumption. Our goal with this paper is to explore the possibility of scheduling in a power-efficient manner without the need for expensive power monitors on every node. We begin by considering that no cluster is truly homogeneous with respect to energy consumption. From there we develop a MapReduce framework that can evaluate the current status of each node and dynamically react to estimated power usage. Inso doing, we shift power consumption work toward more energy efficient nodes which are currently consuming less power. Our work shows that given an ideal framework configuration, certain nodes may consume only 62.3% of the dynamic power they consumed when the same framework was configured as it would be in a traditional MapReduce implementation.

Published in:

Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on

Date of Conference:

24-29 June 2012