By Topic

A Framework for Partitioning and Execution of Data Stream Applications in Mobile Cloud Computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lei Yang ; Dept. of Comput., Hong Kong Polytech. Univ., Hong Kong, China ; Jiannong Cao ; Shaojie Tang ; Tao Li
more authors

The advances in technologies of cloud computing and mobile computing enable the newly emerging mobile cloud computing paradigm. Three approaches have been proposed for mobile cloud applications: 1) extending the access to cloud services to mobile devices; 2) enabling mobile devices to work collaboratively as cloud resource providers; 3) augmenting the execution of mobile applications on portable devices using cloud resources. In this paper, we focus on the third approach in supporting mobile data stream applications. More specifically, we study the computation partitioning, which aims at optimizing the partition of a data stream application between mobile and cloud such that the application has maximum speed/throughput in processing the streaming data. To the best of our knowledge, it is the first work to study the partitioning problem for mobile data stream applications, where the optimization is placed on achieving high throughput of processing the streaming data rather than minimizing the make span of executions in other applications. We first propose a framework to provide runtime support for the dynamic partitioning and execution of the application. Different from existing works, the framework not only allows the dynamic partitioning for a single user but also supports the sharing of computation instances among multiple users in the cloud to achieve efficient utilization of the underlying cloud resources. Meanwhile, the framework has better scalability because it is designed on the elastic cloud fabrics. Based on the framework, we design a genetic algorithm to perform the optimal partition. We have conducted extensive simulations. The results show that our method can achieve more than 2X better performance over the execution without partitioning.

Published in:

Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on

Date of Conference:

24-29 June 2012