By Topic

QoS-Driven Service Selection for Multi-tenant SaaS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Qiang He ; Faulty of Inf. & Commun. Technol., Swinburne Univ. of Technol., Melbourne, VIC, Australia ; Han, J. ; Yun Yang ; Grundy, John
more authors

Cloud-based software applications (Software as a Service - SaaS) for multi-tenant provisioning have become a major development paradigm in Web engineering. Instead of serving a single end-user, a multi-tenant SaaS provides multiple end-users with the same functionality but with potentially different quality-of-service (QoS) values. The service selection for such a SaaS is a complex decision-making process which involves a number of stakeholders with different QoS requirements. SaaS developers need to compose services with different QoS values to meet end-users' different multidimensional QoS constraints for the SaaS. Furthermore, they also need to satisfy SaaS providers' optimisation goals for the SaaS, such as least resource cost and best system performance. Existing QoS-aware service selection approaches are oriented at a single tenant. They do not consider the characteristics of multi-tenant SaaS and hence are ineffective and inefficient when applied to compose multi-tenant SaaS. In this paper, we introduce a novel QoS-driven approach for helping SaaS developers select the services for composing multi-tenant SaaS, which achieves SaaS providers' optimisation goals while fulfilling the end-users' different levels of QoS constraints. The proposed approach is evaluated using an example SaaS synthetically generated based on a dataset of real-world Web services. Experimental results show that our approach significantly outperforms existing approaches in terms of both effectiveness and performance.

Published in:

Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on

Date of Conference:

24-29 June 2012