By Topic

IncMR: Incremental Data Processing Based on MapReduce

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cairong Yan ; Dept. of Comput. Sci. & Technol., Donghua Univ., Shanghai, China ; Xin Yang ; Ze Yu ; Min Li
more authors

MapReduce programming model is widely used for large scale and one-time data-intensive distributed computing, but lacks flexibility and efficiency of processing small incremental data. IncMR framework is proposed in this paper for incrementally processing new data of a large data set, which takes state as implicit input and combines it with new data. Map tasks are created according to new splits instead of entire splits while reduce tasks fetch their inputs including the state and the intermediate results of new map tasks from designate nodes or local nodes. Data locality is considered as one of the main optimization means for job scheduling. It is implemented based on Hadoop, compatible with the original MapReduce interfaces and transparent to users. Experiments show that non-iterative algorithms running in MapReduce framework can be migrated to IncMR directly to get efficient incremental and continuous processing without any modification. IncMR is competitive and in all studied cases runs faster than that processing the entire data set.

Published in:

Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on

Date of Conference:

24-29 June 2012