By Topic

Scan-Sharing for Optimizing RDF Graph Pattern Matching on MapReduce

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
HyeongSik Kim ; North Carolina State Univ., Raleigh, NC, USA ; Padmashree Ravindra ; Kemafor Anyanwu

Recently, the number and size of RDF data collections has increased rapidly making the issue of scalable processing techniques crucial. The MapReduce model has become a de facto standard for large scale data processing using a cluster of machines in the cloud. Generally, RDF query processing creates join-intensive workloads, resulting in lengthy MapReduce workflows with expensive I/O, data transfer, and sorting costs. However, the MapReduce computation model provides limited static optimization techniques used in relational databases (e.g., indexing and cost-based optimization). Consequently, dynamic optimization techniques for such join-intensive tasks on MapReduce need to be investigated. In some previous efforts, we propose a Nested Triple Group data model and Algebra (NTGA) for efficient graph pattern query processing in the cloud. Here, we extend this work with a scan-sharing technique that is used to optimize the processing of graph patterns with repeated properties. Specifically, our scan-sharing technique eliminates the need for repeated scanning of input relations when properties are used repeatedly in graph patterns. A formal foundation underlying this scan sharing technique is discussed as well as an implementation strategy that has been integrated in the Apache Pig framework is presented. We also present a comprehensive evaluation demonstrating performance benefits of our NTGA plus scan-sharing approach.

Published in:

Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on

Date of Conference:

24-29 June 2012