Cart (Loading....) | Create Account
Close category search window

On Dual-Rail Control Logic for Enhanced Circuit Robustness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mokhov, A. ; Sch. of Comput. Sci., Newcastle Univ., Newcastle upon Tyne, UK ; Khomenko, V. ; Sokolov, D. ; Yakovlev, A.

Ultra low-power design and energy harvesting applications require digital systems to operate under extremely low voltages approaching the point of balance between dynamic and static power consumption which is attained in the sub-threshold operation mode. Delay variations are extremely large in this mode, which calls for the use of asynchronous circuits that are speed-independent or quasi-delay-insensitive. However, even these classes of asynchronous logic become vulnerable because certain timing assumptions commonly accepted under normal operating conditions are no longer valid. In particular, the delay of inverters, often used as the so-called input 'bubbles', can no longer be neglected and they have to be either removed or properly acknowledged to ensure speed-independence. This paper presents an automated approach to synthesis of robust controllers for sub-threshold digital systems based on dual-rail implementation of control logic which eliminates inverters completely. This and other important properties are analysed and compared to the standard single-rail solutions. Dual-rail controllers are shown not to have significant overheads in terms of area and power consumption and are even faster in some cases due to the elimination of inverters from critical paths. The presented automated synthesis techniques are very efficient and can be applied to very large controllers as demonstrated in benchmarks.

Published in:

Application of Concurrency to System Design (ACSD), 2012 12th International Conference on

Date of Conference:

27-29 June 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.