By Topic

Large-Scale On-Chip Dynamic Programming Network Inferences Using Moderated Inter-core Communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mundy, A. ; Sch. of Electr. & Electron. Eng., Newcastle Univ., Newcastle upon Tyne, UK ; Mak, T. ; Yakovlev, A. ; Davidson, S.
more authors

The analysis of large scale, complex networks using dynamic programming is of great use in many scientific and engineering disciplines. Current applications often require the analysis of scale-free networks with many millions of nodes and edges, presenting a huge computational challenge. Employing a distributed networks-on-chip infrastructure presents a unique opportunity of delivering power efficient and massive parallel accelerations. However, bursting and asymmetric communications across cores could create instant network saturation and lead to packet loss and performance degradation. In this paper, we present a moderated communication methodology that enables a balanced channel usage and network topological adaptation for improved performance. A novel analytical communication model for NoC is developed and leads to a theoretical bound of the on-chip communication cost estimate. Performances of the many-core computation and the proposed methods are rigorously evaluated using the real 18-core Spinnaker chip. We demonstrate a 10x speed-up in analysis convergence and a 42% reduction in instantaneous Packet Injection Rate based on benchmark networks.

Published in:

Application of Concurrency to System Design (ACSD), 2012 12th International Conference on

Date of Conference:

27-29 June 2012