By Topic

Development of Model and Enhancement of Measurement Precision of Sensor Vibration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zine Ghemari ; Department of Electrical Engineering, University of M'sila, M'sila, Algeria ; Salah Saad

In this paper, research on a vibration sensor (accelerometer) that converts mechanical load to an electrical signal is carried out. An accelerometer mathematical model is developed to select the best damping rate value to reduce the measurement error as much as possible. The main purpose of this paper is to enhance the vibration sensor performances (choice of the best value of damping rate and minimization of measurement error by increasing sensor precision and reliability). The developed model is validated by computer simulation and experimental tests. The obtained results have demonstrated that an appropriate damping rate can reduce measurement error of relative movement to 1%.

Published in:

IEEE Sensors Journal  (Volume:12 ,  Issue: 12 )