By Topic

Heterogeneous double populations based hybrid genetic algorithm design for training feedforward neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li Feng Zhang ; School of Information, Renmin University of China, 59, Zhongguancun Street, Haidian, Beijing, China, 100872 ; Rong He ; Meng Ling Yan

Genetic algorithms (GA) has been extensively applied to address the shortcomings of gradient based leaning methods in training feedforward neural networks (NN). However, the complicated properties of NN training, such as context dependence problem between neurons and permutation problem of genetic representation, will cause difficulties in efficiently implementing conventional GAs. In the present study, a novel hybrid GA design is proposed to overcome these problems. First, for the sake of eliminating the context dependence, the new method adopts GA and least squares estimator to separately optimize the neurons in hidden and output layers. Second, in order to completely avoid the permutation problem, the proposed GA design employs two heterogeneous populations that evolve in company but respectively learn the optimal combinations and parameters of hidden neuron. Finally, experimental studies encouragingly show that, in comparison with five well-known conventional approaches, the new training method displays a much better approximation and generalization capabilities in nonlinear static and dynamic modeling, especially for the observed signals corrupted with large measurement noises.

Published in:

2012 IEEE Congress on Evolutionary Computation

Date of Conference:

10-15 June 2012