Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Sampling + reweighting: Boosting the performance of AdaBoost on imbalanced datasets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bo Yuan ; Intell. Comput. Lab., Tsinghua Univ., Shenzhen, China ; Xiaoli Ma

Existing attempts to improve the performance of AdaBoost on imbalanced datasets have largely been focused on modifying its weight updating rule or incorporating sampling or cost sensitive learning techniques. In this paper, we propose to tackle the challenge from a novel perspective. Initially, the dataset is over-sampled and the standard AdaBoost is applied to create a series of base classifiers. Next, the weights of the classifiers are further retrained by Genetic Algorithms (GAs) or comparable optimization techniques where more targeted performance measures such as G-mean and F-measure can be directly used as the objective function. Consequently, unlike other indirect solutions, this sampling + reweighting strategy can purposefully tune AdaBoost towards a certain performance measure of interest with only moderate computational overhead. Experimental results on ten benchmark datasets show that this strategy can reliably boost the performance of AdaBoost and has consistent superiority over EasyEnsemble, which is a competent ensemble method for class imbalance learning.

Published in:

Neural Networks (IJCNN), The 2012 International Joint Conference on

Date of Conference:

10-15 June 2012