By Topic

Similarity clustering for data fusion in Wireless Sensor Networks using k-means

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ribas, A.D. ; Comput. Sci. Lab., Res. & Technol. Innovation Center (FUCAPI), Manaus, Brazil ; Colonna, J.G. ; Figueiredo, C.M.S. ; Nakamura, E.F.

Wireless Sensor Networks consist of a powerful technology for monitoring the physical world. Particularly, in-network data fusion techniques are very important to applications such as target classification and tracking to reduce the communication burden in these constrained networks. However, the efficiency of the solution can be affected by the data correlation among several sensor nodes. Thus, the application of value fusion (for clusters of nodes with correlated measurements) and decision fusion (combining the local decisions of the clusters) is a common strategy. In this work, we propose an algorithm for properly selecting the groups of nodes with correlated measurements. Experiments show that our algorithm is 30% better than a solution that considers only the spatial coherence regions.

Published in:

Neural Networks (IJCNN), The 2012 International Joint Conference on

Date of Conference:

10-15 June 2012