By Topic

Supervised brain emotional learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lotfi, E. ; Dept. of Comput. Eng., Islamic Azad Univ., Torbat-e-Jam, Iran ; Akbarzadeh-T, M.-R.

In this paper we propose the supervised version of neuro-based computational model of brain emotional learning (BEL). In mammalian brain, the limbic system processes emotional stimulus and consists of following two main components: amygdala and orbitofrontal cortex (OFC). Recently several models of BEL based on monotonic reinforcement learning in amygdala are proposed by researchers. Here, we introduce supervised version of BEL which can be learned by pattern-target examples. According to the experimental studies, where various comparisons are made between the proposed method, multilayer perceptron (MLP) and adaptive neuro-fuzzy inference system (ANFIS), the main feature of the presented method is fast training in prediction problems.

Published in:

Neural Networks (IJCNN), The 2012 International Joint Conference on

Date of Conference:

10-15 June 2012