By Topic

Discriminating classes collapsing for Globality and Locality Preserving Projections

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Wang ; Dept. of Autom., Univ. of Sci. & Technol. of China, Hefei, China ; Baogang Hu ; Zengfu Wang

In this paper, a novel approach, namely Globality and Locality Preserving Projections (GLPP), is proposed in the study of dimensionality reduction. The method is designed to combine the ideas behind Locality Preserving (LP), Discriminating Power (DP) and Maximally Collapsing Metric Learning (MCML), resulting in a unified model. Several distinguished features are obtained from the integration design. First, the method is able to take into account both global and local information of the data set. We introduce a new formula for calculating the conditional probabilities, which can remove the locality distortions from MCML. Second, discrimination information is applied so that a projection matrix is formed which can collapse all data points of the same class closer together, while pushing points of different classes further away. Third, the proposed method guarantees a supervised convex algorithm, which is a critical feature in data processing. Furthermore on this concern, GLPP is mapped to a Graphics Processor Unit (GPU) architecture in the implementation to be appropriate for large scale data sets. Several numerical studies are conducted on a variety of data sets. The numerical results confirm that GLPP consistently outperforms most up-to-date methods, allowing high classification accuracy, good visualization and sharply decreased consuming time.

Published in:

Neural Networks (IJCNN), The 2012 International Joint Conference on

Date of Conference:

10-15 June 2012