By Topic

Neural network PMV estimation for model-based predictive control of HVAC systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ferreira, P.M. ; Algarve Sci. & Technol. Park, Univ. do Algarve, Faro, Portugal ; Silva, S.M. ; Ruano, A.E. ; Negrier, A.T.
more authors

Heating, Ventilating and Air Conditioning (HVAC) systems are used to provide adequate comfort to occupants of spaces within buildings. One important aspect of comfort, the thermal sensation, is commonly assessed by computation of the Predicted Mean Vote (PMV) index. Model-based predictive control may be applied to HVAC systems in existing buildings in order to provide a desired degree of thermal comfort and simultaneously achieve significant energy savings. This control strategy may be formulated as a discrete optimisation problem and solved by means of structured search techniques. Finding the optimal solution depends on the ability of computing many PMV values in a small amount of time. As the PMV formulation involves iterative computations consuming variable time, it is crucial to have a method for fast, possibly constant execution time, computation of the PMV index. In this paper it is experimentally shown that an Artificial Neural Network (ANN) can estimate the PMV index with varying degrees of efficiency over the trade-off of accuracy versus computational speed-up.

Published in:

Neural Networks (IJCNN), The 2012 International Joint Conference on

Date of Conference:

10-15 June 2012