By Topic

Incremental learning of gestures by imitation in a humanoid robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sylvain Calinon ; LASA Laboratory - Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Switzerland ; Aude Billard

We present an approach to teach incrementally human gestures to a humanoid robot. By using active teaching methods that puts the human teacher “in the loop” of the robot's learning, we show that the essential characteristics of a gesture can be efficiently transferred by interacting socially with the robot. In a first phase, the robot observes the user demonstrating the skill while wearing motion sensors. The motion of his/her two arms and head are recorded by the robot, projected in a latent space of motion and encoded probabilistically in a Gaussian Mixture Model (GMM). In a second phase, the user helps the robot refine its gesture by kinesthetic teaching, i.e. by grabbing and moving its arms throughout the movement to provide the appropriate scaffolds. To update the model of the gesture, we compare the performance of two incremental training procedures against a batch training procedure. We present experiments to show that different modalities can be combined efficiently to teach incrementally basketball officials' signals to a HOAP-3 humanoid robot.

Published in:

Human-Robot Interaction (HRI), 2007 2nd ACM/IEEE International Conference on

Date of Conference:

9-11 March 2007