By Topic

Evolving local means method for clustering of streaming data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Baruah, R.D. ; Sch. of Comput. & Commun., Lancaster Univ., Lancaster, UK ; Angelov, P.

A new on-line evolving clustering approach for streaming data is proposed in this paper. The approach is based on the concept that local mean of samples within a region has the highest density and the gradient of the density points towards the local mean. The algorithm merely requires recursive calculation of local mean and variance, due to which it easily meets the memory and time constraints for data stream processing. The experimental results using synthetic and benchmark datasets show that the proposed approach attains results at par with offline approach and is comparable to popular density-based mean-shift clustering yet it is significantly more efficient being one-pass and non-iterative.

Published in:

Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference on

Date of Conference:

10-15 June 2012