By Topic

A smoothly constrained Kalman filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. De Geeter ; Dept. BR3, SCK.CEN, Mol, Belgium ; H. Van Brussel ; J. De Schutter ; M. Decreton

This paper presents the Smoothly Constrained Kalman Filter (SCKF) for nonlinear constraints. A constraint is any relation that exists between the state variables. Constraints can be treated as perfect observations. But, linearization errors can prevent the estimate from converging to the true value. Therefore, the SCKF iteratively applies nonlinear constraints as nearly perfect observations, or, equivalently, weakened constraints. Integration of new measurements is interlaced with these iterations, which reduces linearization errors and, hence, improves convergence compared to other iterative methods. The weakening is achieved by artificially increasing the variance of the nonlinear constraint. The paper explains how to choose the weakening values, and when to start and stop the iterative application of the constraint

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:19 ,  Issue: 10 )