By Topic

A formulation of multitarget tracking as an incomplete data problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
H. Gauvrit ; IRISA/CNRS, Rennes, France ; J. P. Le Cadre ; C. Jauffret

Traditional multihypothesis tracking methods rely upon an enumeration of all the assignments of measurements to tracks. Pruning and gating are used to retain only the most likely hypotheses in order to drastically limit the set of feasible associations. The main risk is to eliminate correct measurement sequences. The probabilistic multiple hypothesis tracking (PMHT) method has been developed by Streit and Luginbuhl in order to reduce the drawbacks of "strong" assignments. The PMHT method is presented in a general mixture densities perspective. The Expectation-Maximization (EM) algorithm is the basic ingredient for estimating mixture parameters. This approach is then extended and applied to multitarget tracking for nonlinear measurement models in the passive sonar perspective.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:33 ,  Issue: 4 )