By Topic

The illumination-invariant matching of deterministic local structure in color images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Slater ; Dept. of Electr. & Comput. Eng., California Univ., Irvine, CA, USA ; G. Healey

The availability of multiple spectral measurements at each pixel in an image provides important additional information for recognition. Spectral information is of particular importance for applications where spatial information is limited. Such applications include the recognition of small objects or the recognition of small features on partially occluded objects. We introduce a feature matrix representation for deterministic local structure in color images. Although feature matrices are useful for recognition, this representation depends on the spectral properties of the scene illumination. Using a linear model for surface spectral reflectance with the same number of parameters as the number of color bands, we show that changes in the spectral content of the illumination correspond to linear transformations of the feature matrices, and that image plane rotations correspond to circular shifts of the matrices. From these relationships, we derive an algorithm for the recognition of local surface structure which is invariant to these scene transformations. We demonstrate the algorithm with a series of experiments on images of real objects

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:19 ,  Issue: 10 )