Scheduled Maintenance on April 29th, 2016:
IEEE Xplore will be unavailable for approximately 1 hour starting at 11:00 AM EDT. We apologize for the inconvenience.
By Topic

Space-variant Fourier analysis: the exponential chirp transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. Bonmassar ; Dept. of Biomed. Eng., Boston Univ., MA, USA ; E. L. Schwartz

Space-variant (or foveating) vision architectures are of importance in both machine and biological vision. In this paper, we focus on a particular space-variant map, the log-polar map, which approximates the primate visual map, and which has been applied in machine vision by a number of investigators during the past two decades. Associated with the log-polar map, we define a new linear integral transform, which we call the exponential chirp transform. This transform provides frequency domain image processing for space-variant image formats, while preserving the major aspects of the shift-invariant properties of the usual Fourier transform. We then show that a log-polar coordinate transform in frequency provides a fast exponential chirp transform. This provides size and rotation, in addition to shift, invariant properties in the transformed space. Finally, we demonstrate the use of the fast exponential chirp algorithm on a database of images in a template matching task, and also demonstrate its uses for spatial filtering

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:19 ,  Issue: 10 )