By Topic

A multiresolution approach to discrimination in SAR imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
W. W. Irving ; Alphatech Inc., Burlington, MA, USA ; L. M. Novak ; A. S. Willsky

We develop and test a new algorithm for discriminating man-made objects from natural clutter in synthetic-aperture radar (SAR) imagery. This algorithm exploits characteristic variations in speckle pattern as image resolution is varied from course to fine. We model these variations as an autoregression in scale, and then use the autoregressive model to define a multiresolution log-likelihood ratio discriminant. We incorporate this discriminant into the existing Lincoln Laboratory SAR system for automatic target recognition (ATR), and test the augmented system by applying it to millimeter-wave SAR imagery having 0.3 m resolution and representing 56 square kilometers of terrain. At a probability of detection of 0.95, the addition of the multiresolution discriminant reduces the number of natural-clutter false alarms by a factor of six.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:33 ,  Issue: 4 )