By Topic

A reconstruction decoder for the perceptual computer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dongrui Wu ; Machine Learning Lab, GE Global Research, Niskayuna, NY, USA

The Word decoder is a very important approach for decoding in the Perceptual Computer. It maps the computing with words (CWW) engine output, which is a fuzzy set, into a word in a codebook so that it can be understood. However, the Word decoder suffers from significant information loss, i.e., the fuzzy set model of the mapped word may be quite different from the fuzzy set output by the CWW engine, especially when the codebook is small. In this paper we propose a Reconstruction decoder, which represents the CWW engine output as a combination of two successive codebook words with minimum information loss by solving a constrained optimization problem. The Reconstruction decoder can be viewed as a generalized Word decoder and it is also implicitly a Rank decoder. Moreover, it preserves the shape information of the CWW engine output in a simple form without sacrificing much accuracy. Experimental results verify the effectiveness of the Reconstruction decoder. Its Matlab implementation is also given in this paper.

Published in:

Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference on

Date of Conference:

10-15 June 2012