By Topic

Stationary Consensus of Asynchronous Discrete-Time Second-Order Multi-Agent Systems Under Switching Topology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiahu Qin ; Research School of Engineering, Australian National University, Canberra, Australia ; Changbin Yu ; Sandra Hirche

This paper is concerned with the asynchronous consensus problem of discrete-time second-order multi-agent system under dynamically changing communication topology, in which the asynchrony means that each agent detects the neighbors' state information to update its state information by its own clock. It is not assumed that the agents' clocks are synchronized. Nor is it assumed that the time sequence over which each agent update its state information is evenly spaced. By using tools from graph theory and nonnegative matrix theory, particularly the product properties of row-stochastic matrices from an infinite set, we finally show that essentially the same result as that for the synchronous discrete-time system holds in the face of asynchronous setting. This generalizes the existing result to a very general case.

Published in:

IEEE Transactions on Industrial Informatics  (Volume:8 ,  Issue: 4 )