By Topic

Photonic Generation of Wideband Time-Delay-Signature-Eliminated Chaotic Signals Utilizing an Optically Injected Semiconductor Laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Nianqiang Li ; School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China ; Wei Pan ; Shuiying Xiang ; Lianshan Yan
more authors

Photonic generation of wideband chaotic signals with time delay signature elimination is investigated experimentally and numerically based on a semiconductor laser (slave laser) with chaotic optical injection from a master laser. The master laser is subject to moderate optical feedback where the feedback strength and external-cavity length are fixed, while the slave laser stands alone. The experimental results show that wideband chaotic signals with successful time delay concealment can be generated in the slave laser by simply adjusting the coupling strength and frequency detuning between the two lasers. Furthermore, the numerical results are in accordance with the experimental observations. Finally, we propose a simple method for simultaneously generating multiple streams of high-quality chaotic signals using multichaotic lasers, where the time delay is effectively concealed in the autocorrelation function and delayed mutual information calculated from the chaotic time series.

Published in:

IEEE Journal of Quantum Electronics  (Volume:48 ,  Issue: 10 )