Cart (Loading....) | Create Account
Close category search window
 

Exploiting Equalization Techniques for Improving Data Rates in Organic Optoelectronic Devices for Visible Light Communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Haigh, P.A. ; Opt. Commun. Res. Group, Northumbria Univ., Newcastle upon Tyne, UK ; Ghassemlooy, Z. ; Hoa Le Minh ; Rajbhandari, S.
more authors

This paper presents the use of equalization techniques in visible light communication (VLC) systems in order to increase the data rate. Here we investigate two VLC links a silicon (Si) light emitting diode (LED) and an organic photodetector (OPD), and an organic LED (OLED) plus an Si photodetector (PD), together with three equalization schemes of an RC high pass equalizer, a fractionally spaced zero-forcing equalizer (ZF) and an artificial neural network (ANN). In addition we utilize a pre-distortion scheme to enhance the performance of the digital equalizers. For both systems the bit rate achieved are 750 kb/s from a raw bandwidth (BW) of 30 kHz and 550 kb/s from a raw BW of 93 kHz.

Published in:

Lightwave Technology, Journal of  (Volume:30 ,  Issue: 19 )

Date of Publication:

Oct.1, 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.