By Topic

Nonlinear vector prediction using feed-forward neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. A. Rizvi ; Coll. of Staten Island, City Univ. of New York, NY ; Lin-Cheng Wang ; N. M. Nasrabadi

The performance of a classical linear vector predictor is limited by its ability to exploit only the linear correlation between the blocks. However, a nonlinear predictor exploits the higher order correlations among the neighboring blocks, and can predict edge blocks with increased accuracy. We have investigated several neural network architectures that can be used to implement a nonlinear vector predictor, including the multilayer perceptron (MLP), the functional link (FL) network, and the radial basis function (RBF) network. Our experimental results show that a neural network predictor can predict the blocks containing edges with a higher accuracy than a linear predictor

Published in:

IEEE Transactions on Image Processing  (Volume:6 ,  Issue: 10 )