Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Unsupervised texture classification using vector quantization and deterministic relaxation neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Raghu, P.P. ; Centre for Syst. & Devices, Indian Inst. of Technol., Madras, India ; Poongodi, R. ; Yegnanarayana, B.

This paper describes the use of a neural network architecture for classifying textured images in an unsupervised manner using image-specific constraints. The texture features are extracted by using two-dimensional (2-D) Gabor filters arranged as a set of wavelet bases. The classification model comprises feature quantization, partition, and competition processes. The feature quantization process uses a vector quantizer to quantize the features into codevectors, where the probability of grouping the vectors is modeled as Gibbs distribution. A set of label constraints for each pixel in the image are provided by the partition and competition processes. An energy function corresponding to the a posteriori probability is derived from these processes, and a neural network is used to represent this energy function. The state of the network and the codevectors of the vector quantizer are iteratively adjusted using a deterministic relaxation procedure until a stable state is reached. The final equilibrium state of the vector quantizer gives a classification of the textured image. A cluster validity measure based on modified Hubert index is used to determine the optimal number of texture classes in the image

Published in:

Image Processing, IEEE Transactions on  (Volume:6 ,  Issue: 10 )