Cart (Loading....) | Create Account
Close category search window
 

Unsupervised texture classification using vector quantization and deterministic relaxation neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Raghu, P.P. ; Centre for Syst. & Devices, Indian Inst. of Technol., Madras, India ; Poongodi, R. ; Yegnanarayana, B.

This paper describes the use of a neural network architecture for classifying textured images in an unsupervised manner using image-specific constraints. The texture features are extracted by using two-dimensional (2-D) Gabor filters arranged as a set of wavelet bases. The classification model comprises feature quantization, partition, and competition processes. The feature quantization process uses a vector quantizer to quantize the features into codevectors, where the probability of grouping the vectors is modeled as Gibbs distribution. A set of label constraints for each pixel in the image are provided by the partition and competition processes. An energy function corresponding to the a posteriori probability is derived from these processes, and a neural network is used to represent this energy function. The state of the network and the codevectors of the vector quantizer are iteratively adjusted using a deterministic relaxation procedure until a stable state is reached. The final equilibrium state of the vector quantizer gives a classification of the textured image. A cluster validity measure based on modified Hubert index is used to determine the optimal number of texture classes in the image

Published in:

Image Processing, IEEE Transactions on  (Volume:6 ,  Issue: 10 )

Date of Publication:

Oct 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.