By Topic

Automatic classification of cross-site scripting in web pages using document-based and URL-based features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nunan, A.E. ; Inst. of Comput. (ICOMP), Fed. Univ. of Amazonas, Manaus, Brazil ; Souto, E. ; dos Santos, E.M. ; Feitosa, E.

The structure of dynamic websites comprised of a set of objects such as HTML tags, script functions, hyperlinks and advanced features in browsers lead to numerous resources and interactiveness in services currently provided on the Internet. However, these features have also increased security risks and attacks since they allow malicious codes injection or XSS (Cross-Site Scripting). XSS remains at the top of the lists of the greatest threats to web applications in recent years. This paper presents the experimental results obtained on XSS automatic classification in web pages using Machine Learning techniques. We focus on features extracted from web document content and URL. Our results demonstrate that the proposed features lead to highly accurate classification of malicious page.

Published in:

Computers and Communications (ISCC), 2012 IEEE Symposium on

Date of Conference:

1-4 July 2012