By Topic

Cloud-Vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Soyata, T. ; Dept. of Electr. & Comput. Eng., Univ. of Rochester, Rochester, NY, USA ; Muraleedharan, R. ; Funai, C. ; Minseok Kwon
more authors

Face recognition applications for airport security and surveillance can benefit from the collaborative coupling of mobile and cloud computing as they become widely available today. This paper discusses our work with the design and implementation of face recognition applications using our mobile-cloudlet-cloud architecture named MOCHA and its initial performance results. The challenge lies with how to perform task partitioning from mobile devices to cloud and distribute compute load among cloud servers (cloudlet) to minimize the response time given diverse communication latencies and server compute powers. Our preliminary simulation results show that optimal task partitioning algorithms significantly affect response time with heterogeneous latencies and compute powers. Motivated by these results, we design, implement, and validate the basic functionalities of MOCHA as a proof-of-concept, and develop algorithms that minimize the overall response time for face recognition. Our experimental results demonstrate that high-powered cloudlets are technically feasible and indeed help reduce overall processing time when face recognition applications run on mobile devices using the cloud as the backend servers.

Published in:

Computers and Communications (ISCC), 2012 IEEE Symposium on

Date of Conference:

1-4 July 2012