By Topic

Mission-aware placement of RF-based power transmitters in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Melike Erol-Kantarci ; School of Electrical Engineering and Computer Science University of Ottawa Ottawa, ON, Canada ; Hussein T. Mouftah

Wireless Sensor Networks (WSNs) provide wide reach and coverage at low-cost which enable them to be utilized in various fields such as health, smart grid, industrial facilities and defense. One of the fundamental limitations of WSNs in long-lasting applications is the network lifetime. To overcome the battery constraint of sensor nodes, duty cycling, energy-efficient protocols and energy harvesting have been considered widely in the literature. A recently emerging energy harvesting technique, namely Radio Frequency (RF)-based wireless energy transfer promises to extend the lifetime of Wireless Rechargeable Sensor Networks (WRSN) with no dependency on intermittent ambient energy resources. In RF-based wireless energy transfer, deploying power transmitters to fixed locations is costly due to range limitations of wireless power. For this reason, mobile power transmitters that visit a few selected locations; i.e. landmarks are employed. Furthermore, in WSNs sensors are expected to perform certain tasks or missions during their lifetime. The achievement of each mission provides certain profits. In this paper, we aim to optimally select the landmarks for sensor nodes that participate in profit maximizing missions. We propose an Integer Linear Programming (ILP) model, namely Mission-Aware Placement of Wireless Power Transmitters (MAPIT) that optimizes the placement of RF-based chargers in the WRSN by maximizing the number of nodes receiving power from a landmark and those that contribute the maximum profit by achieving a mission. We show that the profit increases for low landmark limit since the number of nodes receiving power from a landmark increases under less landmarks. On the other hand, profit reduces by increased number of missions since the nodes participating to missions become spatially diverse.

Published in:

Computers and Communications (ISCC), 2012 IEEE Symposium on

Date of Conference:

1-4 July 2012