Cart (Loading....) | Create Account
Close category search window
 

Highly compact surface micromachined metamaterial circuits using multilayers of low-loss Benzocyclobutene for microwave and millimeter wave applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eliecer, D. ; Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL, USA ; Xiaoyu Cheng ; Yong-Kyu Yoon

This work explores the implementation of highly compact three dimensional (3D) integrable metamaterial based transmission lines on a low resistivity CMOS grade silicon substrate for microwave and millimeter wave applications. The composite right-left handed (CRLH) architecture is able to be integrated with an integrated circuit (IC) using a multilayer surface micromachined fabrication process as a post-CMOS process. The fabrication process employs the negative tone photo sensitive Benzocyclobutene (BCB) as a low-loss dielectric interlayer material allowing packaging compatible high performance RF circuits. Since the low temperature and multilayer fabrication is compatible with CMOS/MEMS processes, it allows the batch fabrication of multiple devices and the easy implementation of 3D vertical interconnects. The design, modeling, fabrication and on-wafer characterization are presented for 50 Ω compact multilayer finite ground coplanar waveguide (FGC) CRLH unit cells and transmission lines for broadband and multiband operation at Ku and Ka frequencies of 14 GHz and 35 GHz, respectively. Also, the comparison between the simulation and measurement results up to 40 GHz on the aforementioned 3D electromagnetic structures is provided. The left handed capacitance and inductance components of the CRLH structures are implemented with photolithographically defined Metal-Insulator-Metal (MIM) capacitors and BCB embedded meander inductors, respectively, which allows the fabrication of very compact CRLH devices. The fabricated dual band unit cell features a size of λ0/30 at 14 GHz and an insertion loss of less than 2dB within the passband.

Published in:

Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd

Date of Conference:

May 29 2012-June 1 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.