By Topic

Low temperature bonding using non-conductive adhesive for 3D chip stacking with 30μm-pitch micro solder bump interconnections

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Yu-Min Lin ; Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, No.195, Sec.4, Chung-Hsing Road, Chutung, Hsinchu 31040, Taiwan, ROC ; Chau-Jie Zhan ; Kuo-Shu Kao ; Chia-Wen Fan
more authors

Due to the raising requirements of functionality and performance in consumer electronics, high density package technology including high I/O interconnections and 3D chip-stacking technology have received a great number of attentions. Solder micro bumps are widely applied in high density interconnections packaging, but its bonding temperature is still high during process. During chip stacking process, high bonding temperature would lead chip damage and chip warpage induced by the mismatch of coefficient of thermal expansion among each structure within the chip. Also, warpage would cause stress concentration happened within the chip and damage the device and micro interconnections. In order to meet the purpose of low temperature bonding, we demonstrated the chip-to-chip stacking module with a bump pitch of 30um by using non-conductive film in this study. The reliability of the chip-stacking module produced by such low temperature bonding approach was also estimated. A chip-on-chip (COC) structure was used as the test vehicles. There were about 3000 bumps totally in this test vehicle. For evaluating the feasibility of adhesive bonding by NCF in fine pitch micro bumps, Cu/Ni/Au micro bumps joined with Cu/Sn solder micro bumps was conducted by using NCF in this study. After assembly process, thermal cycling test, thermal humidity storage test and high current test were carried out to evaluate the reliability performance of the micro interconnections by such low temperature bonding approach. In this investigation, the chip-on-chip stacking module with a bump pitch of 30μm by using non-conductive film was achieved. The bonding results revealed that the contact resistance of micro joints was about 100 ~ 350 MΩ. The high deviation of contact resistance was due to the non-melting contact between joined micro bump by soft tin solder. The reliability results revealed that the chip-stacking module produced by NCF could pass the reliability test of 1000 cycles of- TCT and 1000 hours of THST. The results of high current test also showed that the NCF joint had excellence endurance against high current density of 5×104 A/cm2 for more than 1300 hours with an increase of contact resistance less than 2%. This study displayed that the NCF material had great potential to be applied in fine-pitch 3D chip stacking. The multi-chip stacking module with a TSV pitch of 20μm produced by NCF will also be presented in this investigation.

Published in:

2012 IEEE 62nd Electronic Components and Technology Conference

Date of Conference:

May 29 2012-June 1 2012