By Topic

Development of a stacked WCSP package platform using TSV (Through Silicon Via) technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Dunne, R. ; Texas Instrum. Inc., Dallas, TX, USA ; Takahashi, Y. ; Mawatari, K. ; Matsuura, M.
more authors

To enable the miniaturization, electrical performance and heterogeneous functionality needs for emerging Analog applications, a stacked Wafer-level Chip Scale Package (WCSP) package platform has been developed using Through-Silicon Via (TSV) technology. This allows stacking of ICs, MEMS, passives and other components in the vertical direction onto active or passive TSV wafers, to create innovative System-in-Package (SiP) product solutions. Since Analog devices are small in size and cost is a key care about, a careful selection of the integration flow is required to achieve a low cost packaging solution. In this work, an integration flow for the stacked WCSP package is presented, along with development details for the Chip-on-Wafer (CoW) bonding and wafer overmolding unit processes. The test vehicle was 3mm × 3mm in size and used 25u diameter Cu TSVs in a 200mm diameter wafer. Interconnect reliability evaluations were done with different micro-bump Under Bump Metallurgy (UBM) and TSV tip surface finish metallization combinations. Wafer ovemolding development included warpage, saw and adhesion evaluations with multiple mold materials. A back-end assembly flow was established with a mass reflow bonding process and an overmold material with low CTE and intermediate Tg and modulus. Samples were prepared with mold-on-die and exposed die package structures. Excellent time-zero yields were obtained, with an average TSV micro-bump interconnect resistance of 25 mohms. Results and failures modes from preliminary reliability testing are included.

Published in:

Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd

Date of Conference:

May 29 2012-June 1 2012